

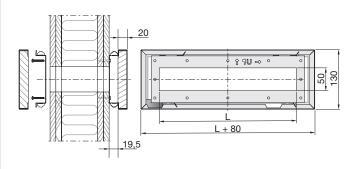
Lindab **OLR**

Nachströmventil

Überströmventil

Beschreibung

OLR ist ein rechteckiges Nachströmventil für die direkte Wandmontage. Es besteht aus zwei schalldämmenden Kulissen, die auf beiden Seiten einer Wand montiert werden.


OLR kann mit Hilfe der perforierten Teleskop-Wandhülse OLRZ montiert werden. OLRZ gewährleistet eine hervorragende Geräuschdämpfung. Die OLRZ muss gesondert bestellt werden.

- Hohe Leistung
- Schalldämmende Kulissen
- Horizontale oder vertikale Montage
- Optionale perforierte Teleskop-Wandhülse

Wartung

Die Frontplatte kann entfernt werden, um die Reinigung von internen Teilen zu ermöglichen. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

Abmessungen

OLR	L	*m
Größe	mm	kg
300	300	1,5
500	500	2,3
700	700	3,0
850	850	3,6

^{*} Das angegebene Gewicht gilt für zwei schalldämpfende Kulissen.

Ausschnittsmaß in der Wand = L + 5 mm x 55 mm.

Schnellauswahl

OLR	$\Delta p_t =$	10 Pa	$\Delta p_t = 15 Pa$		a $\Delta p_t = 15 \text{ Pa}$ $\Delta p_t = 20 \text{ Pa}$		*D _{n,e,w}
Größe	l/s	m³/h	l/s	m³/h	l/s	m³/h	dB
300	29	104	35	126	41	148	45
500	46	166	56	202	65	234	42
700	63	227	77	277	89	320	40
850	77	277	94	338	109	392	40

 $^{^*}D_{n,e,w}$ Werte gültig für Leichtbauwand mit 95 mm Isolierung.

Bestellbeispiel

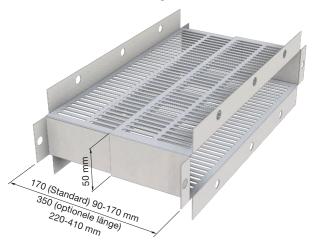
Produkt	OLR	aaa
Тур		
OLR		
Größe		
300, 500, 700, 850		

Beispiel: OLR-300

Material und Ausführung

Montagebügel: Verzinkter Stahl
Frontplatte: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 glänzend (30)

Der Auslass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.



Überströmventil

Zubehör

OLRZ

Perforierte Teleskop-Wandhülse

Bestellbeispiel

Produkt	OLRZ	aaa	bbb
Тур			
OLRZ			
Größe			
300, 500, 700, 850			
Einbaulänge			
170 (Standard) 90-170 mm, 350 (Optionale	Länge) 220	-410 mm	

Beispiel: OLRZ-300-170

OLR mit OLRZ in der Wand installiert

OLRZ als Zubehör. Abbildung zeigt horizontale Installation.

OLR in der Wand installiert

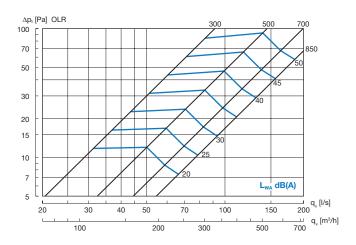
Horizontale Installation.

OLR in der Wand installiert

Vertikale Installation.

Für weitere Informationen, siehe OLR Montageanleitung.

Überströmventil



Technische Daten

Leistung

Volumenstrom q $_{_{V}}$ [l/s] und [m 3 /h], Gesamtdruckverlust $\Delta p_{_{t}}$ [Pa] und Schallleistungspegel L $_{WA}$ [dB(A)] sind für einen Auslass auf beiden Wandseiten angegeben.

Dimensionierung

Elementnormierte Dämmzahl D_{n.e}

Gewichteter Wert ($D_{n,e,w}$), bewertet nach EN ISO 717-1.

Leichtbauwand mit 95 mm Isolierung

OLR	Mittelfrequenz Hz					
Größe	125	250	500	1K	2K	$R_w^* = D_{n,e,w}$
300	31	39	41	42	53	45
500	27	35	38	39	50	42
700	26	33	36	38	48	40
850	26	33	36	37	47	40

Leichtbauwand mit 70 mm Isolierung

OLR	Mittelfrequenz Hz					
Größe	125	250	500	1K	2K	$R_w^*=D_{n,e,w}$
300	31	38	39	38	50	42
500	28	34	35	36	47	39
700	26	33	34	35	46	38
850	25	32	33	34	45	37

Massivwand ohne Isolierung

OLR	Mittelfrequenz Hz					
Größe	125	250	500	1K	2K	$R_w^* = D_{n,e,w}$
300	31	37	30	32	41	35
500	31	35	30	31	38	34
700	31	32	26	28	36	31
850	30	32	26	28	35	31

^{*} Referenzfläche 10 m²

. Jberströmventil

Technische Daten

Berechnungsbeispiel

Bei der Auswahl eines Nachströmventils berechnet man die Abnahme der Schalldämmeigenschaften einer Wand.

Hierfür müssen die Wandfläche und das bewertete Bauschalldämm-Maß R_w bekannt sein.

Dann findet eine Anpassung in Bezug auf den D_{n,e}-Wert des Auslasses statt. D_{n,e} ist der R-Wert des Auslasses bei einer Übertragungsfläche von 10 m², wie in EN ISO 10140-12021 angegeben.

Der D_{n e}-Wert kann anhand der folgenden Werte in den R-Wert für andere Übertragungsflächen umgerechnet werden.

Fläche m²	10	2	1
Korrektur dB	0	-7	-10

Das untenstehende Diagramm zeigt die Abnahme des Bauschalldamm-Maßes in einem angegebenen Oktavband (Dne) oder dem gewichtetem Wert $(D_{n,e,w})$.

Als grobe Schätzung kann die Berechnung direkt mit dem R_w-Wert der Wand und dem gewichteten Wert (D_{n, e, w}) des OLR vorgenommen werden.

Beispiel:

(Siehe untenstehendes Diagramm).

50 dB R., (Wand):

D_{n,e,w} (Auslass): Wandfläche: 45 dB R_w - D_{n.e.w} = 5 dB

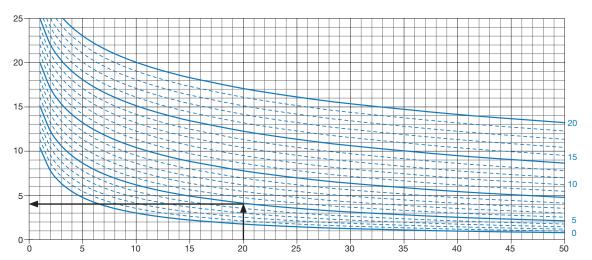
20 m²

Anzahl Auslässe: 20 m²/1 $= 20 \text{ m}^2$

Angegebene Abnahme von R, (Wand): 4 dB

R_w-Wert für Wand mit Auslass: $= 46 \, dB$

Die Berechnung kann auch mit der folgenden Formel durchgeführt werden:


$$R_{res} = 10 \cdot Log \frac{S_{Wand}}{(10m^2 \cdot 10^{-0,1 \cdot D_{n,e}}) + (S_{Wand} \cdot 10^{-0,1 \cdot RWand})}$$

wobei:

- R_{res} die sich ergebende Dämmzahl für Wand und Auslass
- S die Wandfläche ist.
- $D_{n,e,w}$ ist der $D_{n,e,w}$ -Wert des Auslasses aus der Tabelle "Leichtbauwand mit 95 mm Isolierung" auf Seite 4 entnommen (OLR-Größe 300 ausgewählt).
- R_{Wand} der R-Wert der Wand ohne Auslass ist.

Reduktion der Wand (Rw) dB

Unterschied zwischen Wand und Auslass (Rw - Dn, e, w) dB

Wandfläche m² / Anzahl Auslässe [-]

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besseres Klima

